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Abstract

We propose a simple scheme for smoothly approximating the ability distribu-
tion for relatively long tests, assuming that the ICC’s are known or well estimated..
The scheme works for quite a general class of item characteristic curves (ICC’s)
and is guaranteed to completely recover the © distribution as the test length,
J, grows. After an initial function inversion, the scheme can be inexpensively-
used to recover the © distribution in each of severai different administrations
of the same test (or subpopulations in one test administration). Moreover, this
approach could be used to recover the distribution of a dominant ability dimen-
sion when local independence fails. Finally, the scheme provides a starting place
for diagnostics concerning assumptions about the shape of the © distribution or -
ICC's of a particular test. Work is currently underway to further examine and.
refine these methods using essentially unidimensional simuiation data, and to
apply the estimators to real tests.
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The work reported here was initiated under the direction of Paul Holland. while Junker was a partiapant
in the Educationai Testing Service Summer Predoctorai Research Program. Initial computer simulations
were performed by Dorothy Thayer at ETS; the simulations reported here were performed by Junker at the
University of Illinois and Carnegie Mellon University.
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Junker: Recovering the Ability Distribution 2
1 The basic estimator

A principal application of educational testing is inferring the distribution of abilities in
various populations. This task is important for both users of these tests (in, say, comparing
various subpopulations) and researchers and test developers (in, say, developing or using
item calibration—ICC parameter estimation—procedures within the IRT framework).

Inference about the ability distribution from item response data goes back at least to
Lord (1953) who gives an interesting qualitative account of the possible distortions induced
by the traditional IRT model. With the rise in popularity of item response theory, IRT,
many methods for estimating the latent distribution have been developed.

Samejima and Livingston (1979) fit polynomials to latent densities using the method of
moments. Samejima (1984) also fits © densities, given the MLE 4, using specific parametric
families by matching two or more moments. Levine (1984, 1985) projects the (unknown)
latent distribution onto a convenient function space in the span of the test’s conditional
likelihood functions and estimates the projection by maximum likelihood. Mislevy (1984)
assumes that the ability distribution is well approximated by a collection of masses centered
at points placed a priori along the  axis and estimates the sizes of the masses at each
point. More generally, hierarchical and/or empirical Bayes techniques may be used to esti-
mate parameters of the latent trait distribution if it belongs to a tractable family of priors.
These methods all rely upon local independence for their validity; moreover they tend to be
expensive in terms of computation and storage.

We will examine a simpler method of estimating the ability distribution which, in addi-

tion, is robust to some violations of local independence. Consider a set of J binary items
& = (XloX%---vXJ)

that may be embedded in a longer sequence or pool of items (X, X2, Xa,...). Let © L2 the

latent trait of interest, let P,(8), P,(6),..., P;(8) be the item characteristic curves, ICC’s,
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with respect to ©, and denote averages of items as X ; = i v X;, and similarly for averages
P;(8) of ICC’s. Under the usual local independence (LI) and monotonicity (M) conditions
of item response theory (e.g. Hambleton, 1989), or more generally under Stout’s (1990)
formulation of essential independence (EI) and local asymptotic discrimination (LAD), we
know that 6,(X,) = 711(71) is a plausible point estimate of ©: 8;(X;) is a consistent
estimator of © under either set of assumptions. It immediately follows that the distribution
of (X )
Fst) = Pl05(X5) < 1]

converges to that of © as well (e.g. Serfling, 1980, p. 19). Now consider administering the
test X, to N examinees, obtaining N response vectors X,j,...,Xn; and corresponding 6

estimates 0}(&1 I)seens 51(1(_ ~7); a natural estimator of the © distribution is the “empirical”

distribution of these 6;’s
. 1 XN
Fust) = 52 Liuxas 1)
= {fra.ction of 51(_)_(,,_,)’3 < t}
where the “indicator function” 1s takes the value 1 if S is true and 0 if S is false.

Theorem 1 Suppose (X;, X,,...) is a sequence of items and © is a latent trait such that

EI and LAD hold. Define é 7(X ) as above. If the distribution function
F(t) =P[O <]

is continuous, the empirical distribution function Fiy j(t) defined in (1), converges in proba-

bility to F at each t as both J — oo and N — oo.

As with the work of Stout (1990) and Junker (1991), the embedding in an infinite-length
item pool is partly a conceptual tool. In practice, one might check the EI condition using
Stout’s (1987) test, and check the LAD condition by verifying that the average ICC for a

particular test was an invertible function.
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In fact, the full strength of the LAD condition is not needed here. A weaker condition
that also gives the theorem is that, for all ¢, > t, there exists €(¢1,?2) such that

liﬁngJ(tz) - P;(t1) > e(tryta) - (2)
Similarly, the full strength of the EI condition is not needed. It suffices to have, for all £,
Jllgoxo Var(X ;|0 =t) = 0. (3)

Under the weaker conditions (2) and (3), the consistency of f;l (X ;) as a point estimate
for @ may fail, but Theorem 1 still goes through. The proof of Theorem 1 is based on a
well-known exponential bound due to Dvoretsky, Kiefer and Wolfowitz (Serfling, 1980, p.
59) on the error made in approximating F;(t) with Fiy s(t). See Appendix B for some details.

2 Two practical considerations

Note that the theorem does not in any way require that the ICC’s have 0 and 1 as lower and

upper asymptotes. For example, if P; has a lower asymptote c, i.e.,
liminf P;(t) > ¢ > 0,Vt € R,
J—+00

there certainly could be positive probability that some X;’s have X; < c. The only rea-

sonable thing for 7;1 to do with such an X; is send it to —oo, which ruins the estimate of
F.

But for any fixed 8, if ¢ < liminf .o, Ps(6),

lignsupP[Tj <¢ = limsup = P[X; < c|© = t]dF(t)
00 J=e00 -00
< limsup ® P[X; < Ps(6)|© = t)dF(2)

= F(6),
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after observing that P[X; < P;(0)|© = t] — lit<csy and applying standard convergence
results (Ash, 1972). By letting § — —oo it follows that

lim P[YJ <c]=0.
J—~ro0

The distribution of 8;(X ;) does indeed place mass at —oo for some scores (e.g., for X ;/J =0
and fails to “recover” the © distribution for those scores. The point of the calculation
is that as J grows, the part of the © distribution corresponding to these “bad” scores
becomes negligible, so we don’t have to worry, theoretically, about its not being recovered.
Indeed, under local independence, we can further calculate that P[X ; < ¢] falls off essentially
geometrically as J — oo (Hoeffding 1963, p. 15).

However in practice we still must be concerned about X;’s below a lower asymptote c,
or above an upper asymptote d. In the pilot simulation described below we have made two

adjustments for this problem. Our first adjustment replaces the basic point estimate 8; with

an estimator based on a shrunken X} :

) =77 [,

J+2
This estimator also converges in distribution to © , and it is evidently bounded (for fixed J)
if the asymptotes of P; are 0 and 1. Qur second adjustment is in the numerical inversion
of the function P; on the computer. We have written the inverter (a secant variation of
Newton’s method) so that it finds a root of a linear extrapolation of P;(t) = X; when X
lies outside the asymptotes of P;. This adjustment is innocuous asymptotically.

Finally, note that this method (like others) requires “perfect” knowledge of the ICC’s.
In practice of course one never knows the ICC’s perfectly, so it is important to know what
happens if the “wrong” ICC’s are used in the definition of §;. For example, how sensitive
is this method to using estimates of the item parameters in a 3PL (three parameter logistic
ICC) model, instead of the true parameters; or how far off is the estimated © distribution if
the true ICC’s are 3PL’s, but only Rasch ICC’s are used to calculate 8,7
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Theorem 2 Suppose X, X,,... and © are as in Theorem [ with ICC’s Py(t), Px(t), .-.,

with average P;(t) as before, and suppose

Ryi(2), Ra(2), ...

are another set of ICC’s, with average Ry(t). Let P, and B, be the corresponding inverses,
and let
6:(X) =R} (X))

Fiz 0 such that P, R,;(6) has a finite limit 7(0). Then
F;(0) = Pl6s(X,) < 6] — F(r(9))

(where F is the distribution of ©). If these hypotheses hold for every 8, and if T and F are

continuous functions, then the convergence is uniform in 0.

The existence of the limit 7(6) is a technical requirement that, like LAD, is innocuous in
the context of real, finite length tests. The most useful interpretation of Theorem 2 is that

|F7(9) — F[P;'B(8))] — 0

as J — oo, i.e., the distribution of © is estimated with a distortion 7’71?1. This follows
from the theorem if F is continuous at 7(8).

The proof of Theorem 2 expands on the technique used to prove convergence of F;(#) to
F(6); see Appendix B. Just as in Theorem 1 it is also possible to show that the empirical

distributions
1

PN‘J(t) = I—V-

IIMZ

UG PR
converge to F(7(8)).

The value of Theorem 2 is that if the function P;' (R;(6)) can be (partially) identified,
then the distribution of 4, can still tell us a lot about the underlying © distribution. For
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example, if the “true ICC’s” are P;(6) and the © distribution is recovered with “estimated
ICC’s” R;(0), with the estimated ICC’s satisfying

I?J(O) - ﬁ1(0)| —0

as J — oo, then the estimated distributions F; will converge to the true distribution F' of
O, as long as the derivative P;(6) is bounded away from zero at each § as J — oo (this is
guaranteed by LAD for example).

Some knowledge of the underlying © distribution may even be available when the “true
ICC’s™ P;(0) and the “recovery ICC’s” R;(#) do not match up asymptotically. For exam-
ple, it is easy to check numerically that for “typical® parameter values, averages of logistic
ICC’s are themselves approximately logistic (with parameters approximately the averages of
the discrimination and difficulty parameters of the individual ICC’s). Thus for example if
the P;(6) are Rasch (one-parameter logistic) and the estimation method for the “difficulty
parameters” b; is known, on average, to bias the l;j by some fixed but unknown additive
bias para..cter 8 (so that logit R;(0) ~ logit P;(0) + 3) then roughly P, (R(9)) = af — 8,
with a near 1, so that the location of the © distribution will be estimated wrongly but
the (shape) family to which it belongs may still be identified. Similar considerations apply
when the P;(8) are 3PL, and the R;(6) are 2PL: over the domain of P, (8), P (Rs(9)) is

approximately linear.

3 Kernel smoothing

The basic estimator proposed in (1) is the “empirical distribution” function

. 1 &
Fualt) = 52 lpndac

I

J
2 Py =319 msimen )

j=0
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where

.o 1 &
Pn{Xs=jll} = v > LXo,=in)

n=1i
is the natural estimator of the (discrete) distribution of X; based on N observations X,

... XnJ. The indicator function on the far right in (4) may be written

| t— ?3‘(1/.1)} |

(P Gy = [ h

where K(u) is constant, except for a jump from 0 to 1 at u = 0, and k is any positive
number. In cases where the © distribution F is continuous, we may be able to improve
the performance of F ~N.J by replacing the discrete function K with a continuous distribution
function K(u) increasing from 0 to 1 as u ranges from —co to oo. Denote the smoothed

estimator as

J 1,.
Fya(t) = 3 PulXs=j/IK {_‘ -?Th(zu)]

_ 1 Y t-—?l(ym})
= I_V',E:‘K [———-—Jh ] (5)

This estimator is in the same spirit as kernel density estimators for estimating the density of

a continuous random variable V" based on direct. independent observations Vi, V5, ..., Vn:
. 1 & t=-V,
t) = —
= 2k [5]

where k(t) is a fixed density (see for example Silverman, 1986). However it differs from these
estimators in several ways.
First, our estimator Fyy, is a distribution estimator, not a density estimator. Reiss
(1981) is another example in which kernel smoothing is used to estimate distributions.
Second, we are not allowed direct access to the observations ©,,...,0On. We must base
our estimation of F on the discrete, noisy transformations X17,....Xn7 of ©4,...,0On.

Note that the “granularity” of these observations changes with J.
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Third, the observations X,j,..., X~ must be transformed by the nonlinear transfor-
mation P, . This means that the granularity changes over the range of © and Xy; this
complicates practical calculations such as those leading to optimal rates for N,J and A.

We now show that the weighted root mean square error (RMS) between this estimator
and the true © distribution goes to zero as N,J — co. The theorem below is analogous to

Theorem 1.

Theorem 3 Suppose X, X,,... and © are as in Theorem 1 with ICC’s P,(6), P (9),...
Define Fna(t) as in (5), for a fized kernel distribution function K. Then if the disiribution

function F of © is continuous, and K has a finite first absolute moment,
@ . 1/2
~MS = {E [~ (Funlt) - FO)Pgt)dt} -0 (6)

as N — 00,J = 00 and h — 0, for any density g(t).

Unlike most nonparametric density estimation results, there is no restriction on the rates
at which A = 0, N — o0 or J — oo. This is partly because a distribution function is
smoother than, and therefore easier to estimate than, a density. The corresponding technique
for estimation of the © density would require 4 to tend to zero more slowly than £ [éJ(XJ) -
O], for example, as well as further conditions on the rates at which N and J tend to oo.
Despite the fact that there are no rates in the theorem, devising A as a function of N and J
to produce the “right” amount of smoothing is an important issue to which we shall return
below.

The proof of Theorem 3 (see Appendix B) is based on decomposing the RMS in (6) as
rMS* = [ “{P[F; (X)) + hY < ] — PO < ]}%g(t)dt

B
+-1—/°° Var i t=P, (X4)
N Jewo

- ] g(t)dt (7)
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where Y is a random variable with distribution K, independent of © and all item responses.

This technique can be modified to show that
E[Fns(t) - F(t)2 > 0

for any t, and hence Fy(t) — F (t) in probability, for each continuity point t of F. For
example, this provides another proof that our original estimator F N,J converges in probability
to F. It would also be clear from the proof that the same smoothing could be applied with
any consistent estimator 6; in place P, (X ).

From the decomposition of RMS in (7) into squared-bias and variance terms it seems
that the optimal A& shouid be more sensitive to J than N. Indeed, when J is small and N
is relatively large, the coarse granularity inherent in ?;1(7(1) should predominate over the
finer granularity inherent in observing N examinees.

A workable approach to setting k is to make a quick, crude estimate of the variance of ©
by assuming that X, is uniformly distributed on the interval defined by the lower asymptote
c and the upper asymptote d of P;(8) and then applying the formula

h=C.J V5. (Var@)"/? (8)

which seems appropriate when A" has a variance (Silverman, 1986, pp. 45—48; Reiss, 1981).
Our crude estimate of Var © is obtained by tabulating values of 6 = ?;l((j +1)/(J +2))
for all j such that ¢ < (j +1)/(J +2) < d, and calculating

(Var ©)'/? x (.7413)(interquartile range)

(following the relationship between interquartile range and standard deviation for the Normal
distribution). Preliminary trials with C = 1,1/2,1/3,1/4 in (8) indicated that C = 1/3
produced the best RMS results.

There is reason to believe that choice of K should not be very influential on the RMS in

(6) (Silverman, 1986, pp. 42-43). The K used in our simulations was

. t 3
Kt) = [ 21 ) Ly du




Junker: Recovering the Ability Distribution

0 , t <-1
= | Bt-+2) , | <1
1 , t >1

This choice is conservative about the tails of the © distribution.

4 Computer simulation

11

(9)

The estimators proposed in Theorems 1 through 3 are less complicated than distribution

estimators currently in use in IRT. To help evaluate these estimators a pilot simulation

study was performed. In this simulation, item response data was generated using various

dr = 1 parametric models, and we attempted to recover the ability distribution using both

the smoothed and unsmoothed estimators.

_Monte Carlo trials: M =100

Examinee sample size: N = 5,000

c;’s all set to 0.2

ﬂj ~ N(bJal/J)
aj; ~ N(a,-,0.25)

(all independent).

Ability distribution: =~ Normal N(0,1)
Bimodal Mixture = 1N(-1.5,1) + 1N(1.5,1)
Discontinuous x3—1
Test length: J =10, 30, 60, 100
ICC type: Rasch: b;’s equally spaced from -2 to 2
3PL: b;’s equally spaced from -2 to 2

a;’s cycling through 0.5, 1.0, 1.5

‘Estimated’: Generated with the 3PL ICC’s above;
Estimated with the ICC parameters:

v; ~ max{N(0.2,0.1),0}

Table i: Monte Carlo simulation parameters.

The parameters of the pilot simulation are indicated in Table 1. All possible combinations
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of these parameters were investigated. The choice of ability distributions was intended to
examine two “typical” and one “worst case” target distribution. While the standard normal
distribution is extremely smooth and has a bounded positive density the distribution of the
shifted chi-squared random variable 2 —1 puts no mass below § = —1 and the density jumps
from 0 to 400 at # = —1. (This choice is not intended to be terribly realistic, but allows
us to explore the performance of our distribution estimator under adverse circumstances.)
Although the means of these distributions are both 0, the chi-squared distribution has twice
the variance of the normal. The bimodal mixture was chosen to represent a situation where
two radically different types of examinee take the test. Its standard deviation is also greater
than 1 (roughly 1.8).
The ICC’s used were all subfamilies of the three parameter logistic (3PL) curves:

P;(t) = ¢j + (1 — ¢;)[1 + exp[—a;[t — b;]] .

In the case labelled “Rasch”, a; = l,¢; = 0 and b; are as indicated. The same ICC’s
were used to recover F' as to generate the data. Indeed 59) is exactly the MLE for 6
under the Rasch model with known item parameters. Similarly for the 3PL case, where all
the parameters were allowed to vary as indicated above; now 6% is a somewhat inefficien t
estimator of 8. In the case labelled ‘Estimated’, the 3PL ICC’s were used to generate the
data (P;(6)’s in Theorem 2) but then their item parameters were deliberately contaminated
with noise to produce the “recovery ICC’s” (R;(6)’s in Theorem 2) used to estimate F), to
roughly approximate the practical situation in which item parameters themselves must be
estimated from data. Thus the cases Rasch, 3PL, and ‘Estimated’ represent increasingly
hostile situations for the distribution estimator to work in.

Finally, the choice of N = 5.000 examinees was somewhat arbitrary. In preliminary runs,
N = 1,000 and N = 10,000 vielded measures of fit of the estimated ability distribution to the
true distribution quite comparable to those reported here. The main difference was in the

variances of our estimated measures of fit. N = 5.000 was chosen because at that level the
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variance is much better than at N = 1,000 and not much worse than that at N = 10,000.
The basic estimators used to compare recovery of F from case to case were the empirical
distribution function (EDF)
-
Fvalt) = 7 2 L, e

n=1

and the kernel distribution estimator (KDE)

. -6
Bvat =L 3 & [t_o_g__@}

n=1 h

where
~ — J . X + 1
§w =P LIT-
7 (X)) =P, T+2

(and K and h are as described in (8) and (9) above). Each of these distribution estimators
is consistent for the true © distribution, by application of Theorem 1 through Theorem 3.

For each simulated data set, sample means and standard deviations for estimates of

RMS = {E /_: [Fexe(t) — F(t)]’g(t)dt}llz

are reported. In addition, mean estimates of
MAX = E[sup{|Feu(t) — F(t)|: —00 <t < o0}]

and the average value LOC = tpax at which MAX is attained are reported. (Note: Fey
stands for either of the distribution estimators above.) In general the weighting function g
should be chosen to reflect our interests in the @ distribution F: g should give more weight
to areas of F that should be well-estimated and less weight to areas of F for which we are
willing to tolerate less good estimation. In these simulations, the weighting function g was
taken to be the standard normal density: some weight is given to estimating F well at all
0's, but more weight is given to estimating F well near § = 0. More details about these

distances and the methods of calculation can be found in Appendix A below.
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Test RMS Deviation
Length | Estimator | ave SD MAX LOC
10 EDF 0.04655 0.00002 | 0.11021  0.37694
KDE 0.02318 0.00003 | 0.03812 0.89134
30 EDF 0.01692 0.00001 | 0.04032  0.09754
_Kl_)_E 0.00887 0.00002 | 0.01447 0.23184
60 EDF 0.00984 0.00002 | 0.02510  0.07844
KDE 0.00652 0.00002 | 0.01076  0.05334
100 EDF 0.00731 0.00002 | 0.01895 -0.02856
KDE 0.00577 0.00002 | 0.00965 -0.07616
Table 2: © ~ N(0,1), Rasch
[ Test RMS Deviation
Length | Estimator | ave SD MAX LOC

10 EDF 0.07015 0.00002 | 0.15724 -1.00076
KDE 0.05158 0.00003 | 0.09368 -1.23646
30 EDF 0.02794 0.00002 | 0.06418 -0.77476
KDE 0.02176 0.00002 | 0.03755 -1.26626
60 EDF 0.01521 0.00002 | 0.03527 -0.46316
KDE 0.01251 0.00002 | 0.02109 -1.05756
100 EDF 0.01035 0.00002 | 0.02463 —0.33196
KDE 0.00907 0.00003 | 0.01532 -0.80926

Table 3: © ~ N(0,1), 3PL

14




Junker: Recovering the Ability Distribution 15

Test RMS Deviation
Length | Estimator ave SD MAX LOC

10 EDF 0.09665 0.00004 | 0.22175 -0.74996
KDE 0.08412 0.00004 | 0.13431 -1.21956
30 EDF 0.05695 0.00004 | 0.11573 -0.67436
KDE 0.05439 0.00004 | 0.08258 —0.89616
60 EDF 0.01835 0.00002 | 0.04188 -0.70396
KDE 0.01645 0.00003 | 0.02802 -1.10236
100 EDF 0.01823 0.00003 | 0.03782 -0.49826
KDE 0.01767 0.00004 | 0.02668 -0.79636

Table 4: © ~ N(0,1), Estimated

From Tables 2, 3 and 4, it is clear that smoothing in the KDE is helping, especially with
short tests. In comparing Tables 2 and 3 it is clear that the presence of the nonzero lower
asymptote c is degrading the fits. This can be seen both in the reduced RMS values and in
the movement of LOC, the location of the maximum deviation between F.,; and F, toward
negative values. Finally, comparison of Tables 3 and 4 indicates that using ‘noisy’ ICC’s
somewhat degrades the recovery of F.

Figure 1 illustrates the performance of the estimators in Table 3. The first three panels
are probability-probability (p—p) plots of the estimated © distribution (vertical axis) against
the true © distribution (horizontal axis), for 10, 30 and 60 items. Each panel depicts one
of the 100 Monte Carlo trials for the corresponding line of Table 3. The step functions
represent the EDF estimator and the smooth curve represents the KDE estimator. The
closer each is to the solid diagonal line, the better the true probabilities of the © distribution
are estimated. In particular for 30 or 60 items, estimated probabilities are quite close to true
probabilities. The story is very similar for the performance of the estimators in Tables 2, 5
and 6 (see also Figure 3). The fourth panel in Figure 1 compares the density derived from
the KDE estimator in panel three to with the true © density (some excessive bumpiness in

the estimated density is attributable to the fact that the “window width” k was chosen to
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Theta ~ Normal, 3PL, 10 ltems Theta ~ Nommaid, 3PL, 30 ltems
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Figure 1: p — p and density plots of EDF and KDE estimators. EDF is represented by step
function, KDE by curve. In the last panel, the true density is the dashed curve and the
KDE-based density estimate is the solid curve.
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make a good distribution estimate rather than to make a good density estimate).

Thela ~ Normai, Estimated, 30 Rems Theta ~ Normal, Estimated, 30 items

Densiy

0 Y Y T

v Rl
00 02 0.4 os 08 10
True Thete Distriution

Figure 2: p— p and density plots of EDF and KDE estimators. EDF is represented by step
function, KDE by curve. In the second panel, the true density is the dashed curve and the
KDE-based density estimate is the solid curve.

Figure 2 illustrates the performance of the estimators in Table 4. The left panel is a
p — p plot of the EDF (step function) and KDE (smooth curve) estimators for 30 items, and
the right panel compares the corresponding KDE-based density with the true © density. In
the Monte Carlo trial illustrated, contamination in the parameters of the “recovery” ICC’s
caused some bias and scale distortion in the estimated distribution, but the estimate still
correctly suggests that © has a Normal or bell-shaped distribution.

In Tables 3, 6 and 7, in which © is bimodal. the KDE estimator is still doing better
than the EDF. It is encouraging to see that the orders of magnitudes of the RMS and MAX
measures of fit are the same as in the N(0,1) case above. It is a little surprising that the
fits can actually be better for the bimodal cases than the normal, but perhaps the greater
variability is working in our favor here: we are getting more extreme-ability examinees with

which to form F.,; and thus to estimate the tails of F. Finally, note that there is much less
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difference in the fits of the 3PL and ‘Estimated’ 3PL cases.

[ Test RMS Deviation
Length | Estimator | ave SD MAX LOC

10 EDF [0.04769 0.00003 | 0.12379 -1.36996
KDE | 0.03678 0.00003 | 0.06299 -1.25226
30 "EDF | 0.01820 0.00003 | 0.04668 —0.61856
KDE | 0.01547 0.00003 | 0.02502 -0.42646
60 EDF [ 0.01107 0.00003 | 0.02710 —0.25206

KDE 0.00995 0.00003 | 0.01622 -0.17576
100 EDF 0.00870 0.00003 | 0.01923 -0.03886
KDE 0.00817 0.00003 | 0.01290 -0.13216

Table 5: © ~ Bimodal, Rasch

[ Test RMS Deviation
Length | Estimator ave SD MAX LOC
10 EDF 0.05268 0.00003 | 0.12160 1.08084
KDE 0.03612 0.00003 | 0.09342 —4.44996
30 EDF 0.02268 0.00002 | 0.05616 —0.66696
KDE 0.01877 0.00002 | 0.04229 -3.68386
60 EDF 0.01353 0.00003 | 0.03496 -1.24996
KDE 0.01205 0.00003 { 0.02561 -2.75386
100 EDF 0.00998 0.00003 | 0.02457 -1.22086
KDE 0.00924 0.00003 | 0.01860 -2.64946

Table 6: © ~ Bimodal, 3PL

Figure 3 illustrates the performance of the estimators in Table 6, for 60 items. Again,
the left panel is a p— p plot of the EDF (step function) and KDE (smooth curve) estimators
and the right panel depicts the KDE-based density estimate. Once again the estimated
distribution provides good estimates of probabilities under the true distribution, and the
corresponding density estimate tracks the two modes of the true © distribution reasonably

well.
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Test RMS Deviation
Length | Estimator ave SD MAX LOC
10 EDF [ 0.06387 0.00005 | 0.14624 0.78714
KDE | 0.05101 0.00005 | 0.09497 —4.97589
30 EDF | 0.03203 0.00005 | 0.08038 -2.37405
KDE | 0.02058 0.00005 | 0.06457 -3.38695
60 EDF | 0.01386 0.00003 | 0.03747 -1.11546
KDE | 0.01245 0.00003 | 0.02796 -2.63776
100 EDF | 0.01120 0.00004 | 0.02776 -1.42786
KDE | 0.01055 0.00004 | 0.02134 -2.29616

Table 7: © ~ Bimodal, Estimated

Theta ~ Bimodal, 3PL, 60 items Theta ~ Bimodal, 3PL, 60 items
2 8
o
3 .
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00 02 04 os [} ] 1.0 3 2 A ] 1 2 3
Trus Thew Dutrtnston Thetn

Figure 3: p — p and density plots of EDF and KDE estimators. EDF is represented by step
function, KDE by curve. In the second panel, the true density is the dashed curve and the
KDE-based density estimate is the solid curve.
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In Tables 8, 9 and 10, note how gradual the decrease in MAX is; this can be attributed
partly to the fact that 59’ “doesn’t know” that F assigns no mass to the interval (—oo, ~1)
and thus freely places §’s there, so that F., is grossly overestimating F for § < —1. This
certainly explains why LOC is near —1 in all but one case. It seems remarkable that the
RMS should drop as much as it does, considering the fact that the Normal weighting function
g assigns significant weight to the region near or below § = —1. Once again there is little
difference between the 3PL and ‘Estimated’ 3PL cases. Finally, note that the EDF estimator
is doing better than the KDE estimator in many cases here. Our ad hoc choice of 4 is

probably failing us here by being too large to track the “sharp upturn” in F' at —1.

[ Test RMS Deviation
Length | Estimator ave SD MAX LOC
10 EDF 0.09922 0.00004 | 0.23352 -0.26996
KDE 0.09241 0.00003 | 0.20600 -1.00996
30 EDF 0.05404 0.00003 { 0.14608 —0.91796
KDE 0.05508 0.00003 | 0.17924 -1.00996
60 EDF 0.03812 0.00003 ! 0.15993 -1.00996
KDE 0.04010 0.00003 | 0.16010 -1.00316
100 EDF 0.02944 0.00003 | 0.15246 -0.99996
KDE 0.03215 0.00003 | 0.14717 -0.99996

Table 8: © ~ x2 — 1, Rasch

5 Discussion

To implement this scheme in practice, one must numerically invert the average ICC P; for
the test in question at or near the J+1 possible values of X ;. After this, a table constructed
from the inversion can be used simply and cheaply to estimate © distributions for each
of several administrations of the same test, or each of several subpopulations in a single

administration. For shorter tests lengths the basic statistic §; may need to be rescaled,
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Test RMS Deviation
Length | Estimator | ave SD MAX LOC
10 EDF 0.11871 0.00004 | 0.30689 -1.00996
KDE 0.10699 0.00004 | 0.28934 -1.00996
30 EDF 0.07276 0.00004 | 0.22700 -1.00996
KDE 0.07188 0.00004 | 0.23167 -1.00996
60 EDF 0.05291 0.00003 | 0.20477 -1.00996
KDE 0.05408 0.00003 | 0.20211 -1.00996
100 EDF 0.04153 0.00003 | 0.19628 -0.99996
KDE 0.04365 0.00003 | 0.18294 -1.00976
Table 9: © ~ x? -1, 3PL
Test RMS ~ Deviation
Length | Estimator | ave SD MAX LOC

10 EDF 0.11387 0.00005 { 0.30689 -1.00996
KDE 0.10600 0.00005 | 0.33073 -1.00996
30 EDF 0.08264 0.00005 | 0.32359 -1.00996
KDE 0.08161 0.00005 { 0.30244 -1.00996
60 EDF 0.05322 0.00003 | 0.20477 -1.00996
KDE 0.05466 0.00004 | 0.21590 -1.00996
100 EDF 0.04303 0.00004 | 0.20150 -1.00996
KDE 0.04491 0.00004 | 0.20859 -1.00646

Table 10: © ~ x? — 1, Estimated

21
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as we have done with 5‘,”, to effectively estimate F. Kernel smoothing of the estimated
distribution (KDE) is also quite helpful. Work is currently underway (Nandakumar and
Junker, 1992) to further examine and refine these methods using essentially unidimensional
simulation data, and to apply the estimators to real tests.

Because it is fast, this scheme could be also be used for some diagnostic purposes. For
example, if ICC’s were estimated under the assumption‘of a Normal underlying © distribution
and a 3PL model, the KDE estimate of the © distribution could be plotted on a Normal
probability plot to examine (jointly) the assumptions about distribution and ICC forms. Or
the © distribution estimates under two ICC estimation techniques could be compared to see
how well they agree: Quite different ICC forms or parameter sets could in principle lead
to very similar © distributions: if so then for many purposes it would then be a matter of
indifference which ICC’s were used, so considerations such as cost of ICC estimation, etc.,
could come into play. Finally, it may be possible to estimate the © distribution sufficiently
accurately with, say, Rasch ICC’s (for which item parameters can be estimated independently
of the © distribution), and then use that estimate as part of a marginal maximum likelihood
approach to estimating item parameters in a 3PL model which more accurately models the

item response behavior.
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Appendix A Details of the simulation

For each simulated data set, M Monte Carlo trials were run (one trial entails sampling N examinees,
generating a 6 and J item responses for each examinee, and constructing the distribution estimates
F-'NJ and Fyyp from these). In our simulation, M was taken to be 100. In the discussion below,
F4¢ stands for either of the two distribution estimates tried.
For each trial, two measures of fit to the true ability distribution F' were reported. First, the
value of
§ = max{|Fepe(t1) ~ F(t1)] : to,- - -, 1200}

was calculated, for ¢;’s ranging from -6 to 6 spaced at 0.01 intervals, as an approximation to
S5 = sup{|Feae(t) - F(t)];2 € (—00,0)}

as well as the value L = ¢;,,, at which § was attained. Second, an approximation to the squared

distance
1= [7 (Fut) - FO)Pa(0)dt

was calculated. where the weight function g was taken to be the standard normal density. The

approximation used *vas the Monte Carlo approximation

. K
I = % Z[Fe,g(Tk) - F(Tk)]zv
k=1

where T, ...Tx are iid with marginal density g, and K = 500 for our simulation.
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Finally, Monte Carlo sample averages

1 Mo _ 1 M 1 M =

were computed, as well as sample standard deviations. 3 estimates E[S], I estimates E{L], and
T estimates { E[I’]}/2 standard deviation for T was estimated using the delta method (Serfling,
1980, p. 118).

E[S) may be regarded as a reasonable approximation to MAX = E[S). Because of the dis-
cretization in calculating § and L, E[T) probably is not as good an indication of the true value
LOC = t where the distributions are farthest apart, but it may still be of some descriptive value.
Finally, { E[T]}!/? is exactly

RMS = {E /_:[F,.,(z) - F(t)]’g(t)dt}uz

The pseudo-random number generators used were linear congruential generators (see Rubin-

stein, 1981)

rv =(a-r,_; +¢) mod m,

using @ = 7%,¢ = 0,m = 23! for generating ©’s and a = 27 + 1, ¢ = 1, m = 2% for generating
item responses. Normal observations were obtained from these uniform observations by the polar

transformation

Zy = =2logl;cos2xU;

Z; = /=2loglsin2xU;
and the bimodal mixture and x? — 1 observations were taken to be appropriate transformations of
these. Pseudo-random values obtained using these transformations do exhibit some lattice structure
but this was not considered a problem for our calculations, which are essentially all Monte Carlo

integrations.
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Appendix B Proofs

Proof of Theorem 1: Observe that, for any € > 0,

P(Ens(@)-F®) 2| < P[IFns(8)~ Fi(®)+IFs(6) - F(O) 2 ¢
P [|Fy.(8) - F(8)] 2 ¢/2] (for large J)

C- e—2N(¢/2)2

IA

IA

for some universal constant C, and N large. (Serfling, 1980, p. 59). This tends to zero as N — oo.
a

Proof of Theorem 2: Observe that

PR;'(X;) <8 = P(X;<TRs0)
= P[P} (Xs) <F5'Rs(0)]
= P[F;'(X;)+7(8) - P7'Rs(6) < 7(6)).

By Slutsky’s Theorem, since 7(6) = lim j.co P Rs(8) we know that P;*(Xs)+7(6) and P; (X )
have the same asymptotic law, i.e. for any ¢,

+-1

P[P;'(X1) +7(6) - P;'Rs(6) < t] — F(2).
Then in particular for ¢t = 7(9),
P[P} (X)) + 7(6) ~ P5(6)Rs(0) < 7(6)] — F(r(8)).

The assertion about uniform convergence follows from a theorem of Polya (Serfling, 1980, p.18). O
Proof of Theorem 3: In the following calculation, it will be helpful to let Y be a random variable
with distribution K independent of © and all item responses. Squaring (6),

0

RMS* = E [ (Fn(t) = F(t)g(t)dt

- J —_ 2
/ E{Z PN[—)?J =j/J|K [E—_PJI(L/'D.] - PO < t]} g(t)dt

~o0 h
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= / ” {ibias(o)? + (variance(t)]} o(t)dt

i, 2
- {Z Py [Xs=3j/J]| K [—'P’—;(’/ﬂ] ~_PO< t]} g(t)dt

=0
oo J yod e
+ 7 var {z; PulXs = /0K [L:fz,r(li’l] } gle)dt
SR PP
[T {PP3Xo) + Y <4 - Plo < 4} g(0

+/°° Va.r{ EK[ P;l(x"’)]}g(t)dt

na=l

5-1

{P[P T (X 1) + kY < 4] - PO < t]}3g(t)dt

+5 /_ _Vark [—:5"(—-&2] g(t)dt

== (bias)?\”h + (variance)N .

Note that (bias)},;, does not depend on N. As long as
ElY] = / lul K (u)du < oo,

we will have AY — 0 in probability, so that by Slutsky’s Theorem the distributions of EI(YJ)'F’IY
and P} (X ;) will converge to the same thing, namely F(t) = P[© < t], at every t (we are assuming
F is continuous) as J — o0 and h — oo and h — 0. Hence the integrand of (bias)%;, converges to
zero at each t, and if ¢(t) is a density it follows that (bias)%,,;, —0as J — oo and A — 0 (and N
is free).

On the other hand, for each fixed J, h, t the random variable

t—P; (X1)
¢ (=5

is bounded between 0 and 1. hence if g(t) is a density we have for each fixed J and A
-1
/ Var K [ L (XJ)] g(t)dt < 1.

Multiplying by 1/N it is clear that (variance)ysn — 0 as N — oo uniformly in J and A. This

proves Theorem 3. O
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